

LV MFMTM Filter

MFM1714x50M50C5yzz

Low-Voltage MIL-COTS Input Filter Module

Features & Benefits

- 28V nominal input
- 99% efficiency
- Reverse-polarity protection
 - MIL-STD-1275E
- EMI filtering
 - MIL-STD-461E/F/G, selected CE and CS tests
- Input transient protection
 - MIL-STD-1275A/B/D/E
 - MIL-STD-704A/F (MIL-HDBK-704-8)
 Normal and abnormal transients
- Envronmental qualification
 - MIL-STD-810
 - MIL-STD-202
- Low M-Grade temperature rating, providing operation down to –55°C
- Output power up to 350W
- Available in chassis and PCB mount
- Small size
 - 1.76 x 1.40 x 0.36in [44.6 x 35.5 x 9.2mm]

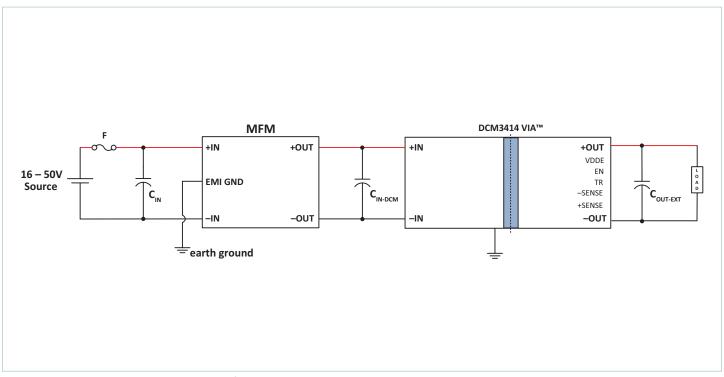
Typical Applications

- Defense
- Aerospace

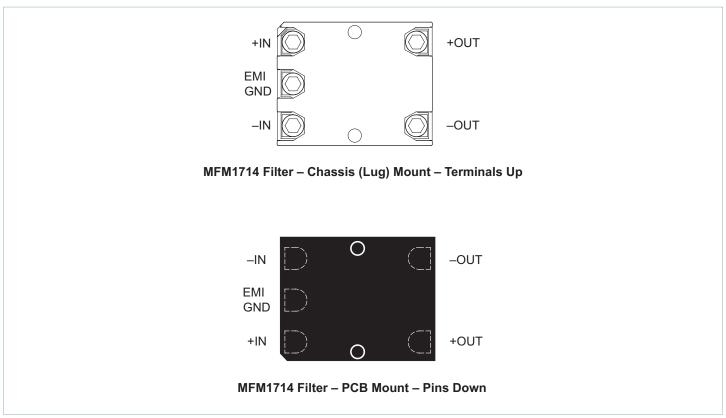
Compatible Products

- Low input voltage DCM3414 VIA™
- Low input voltage ChiP^[a] DCM

Product Description


The MFM DCM™ Filter is a DC front-end module that provides EMI filtering and transient protection. The MFM DCM Filter enables designers using Vicor 28V nominal input voltage VIA™ or ChiP™ [a] modules to meet conducted emission/conducted susceptibility per MIL-STD-461E/F/G; and input transients per MIL-STD-704A/F, MIL-STD-1275A/B/D/E and DO-160E. The MFM DCM Filter accepts an input voltage of 16 – 50V_{DC} (28V nominal input) and delivers output power up to 350W.

[[]a] Additional components are required for EMI filtering and transient suppression, when used with ChiP™ package modules.


Typical Application

M-Grade DCM3414 VIA with an MFM input filter, to meet the EMI and transient requirements

Parts List for Typical Applications	
F	EATON (Cooper/Bussman) ABC series, fast-acting tube fuses rated 30A Littlefuse NANO2 456 Series, surface-mount fuses rated 30A

Pin Configuration

Note: These pin drawings are not to scale.

Pin Descriptions

Signal Name	Туре	Function
+IN	INPUT POWER	Positive input power terminal
-IN	INPUT POWER RETURN	Negative input power terminal
EMI GND	EMI GROUND	EMI ground terminal
+OUT	OUTPUT POWER	Positive output power terminal
-OUT	OUTPUT POWER RETURN	Negative output power terminal

Part Ordering Information

Part Number	Package Type	Product Grade	Option
MFM1714 B 50M50C5 M04	B = Board VIA		04 = Short Pin
MFM1714 B 50M50C5 M08		$M = -55 \text{ to } 100^{\circ}\text{C}$	08 = Long Pin
MFM1714 V 50M50C5 M00	V = Chassis VIA		00 = Chassis

Storage and Handling Information

Attribute	Comments	Specification
Operating Internal Temperature Range (T _{INT})	M Crada	−55 to 125°C
Case Temperature	M-Grade	−55 to 100°C
Storage Temperature	M-Grade	−65 to 125°C
Soldering Temperature	See AN:401 PCB Mount VIA Soldering Guidelines	
Weight		30g [1.06oz]
Pin Material		C145 copper, 1/2 hard
Underplate	Low-stress ductile nickel	50 – 100μin
Dia Finish	Palladium	0.8 – 6µin
Pin Finish	Soft Gold	0.12 – 2µin
Flatness		< 0.25mm [0.010in]

Safety, Reliability and Agency Approvals

Attribute	Comments	Value	Unit
Dielectric Withstand	Input / Output to EMI GND/Case	1500	V _{DC}
MTBF	MIL-HDBK-217FN2 Parts Count - 25°C Ground Benign, Stationary, Indoors / Computer	6.6	MHrs
Agency Approvals/Standards	UKCA, electrical equipment (safety) regulations CE Marked for Low Voltage Directive and RoHS Recast Directive, as applicable		

Absolute Maximum Ratings

The absolute maximum ratings below are stress ratings only. Operation at or beyond these maximum ratings can cause permanent damage to the device. Electrical specifications do not apply when operating beyond rated operating conditions.

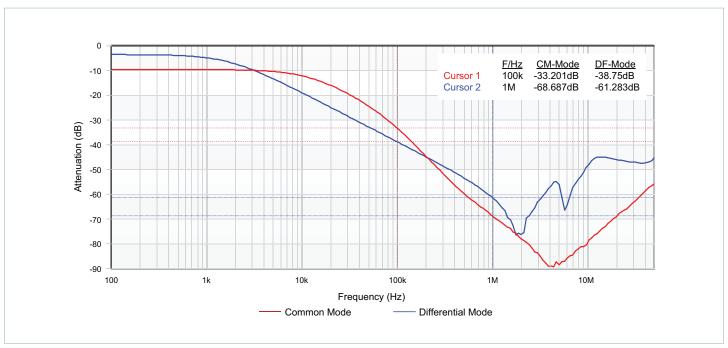
Parameter	Comments	Min	Max	Unit	
	Continuous	-50	65.0		
Input Valtage (INI to INI)	Transient per MIL-STD-1275D/E, 50ms		100	.,,	
Input Voltage (+IN to –IN)	Transient per MIL-STD-1275A/B/D, 70µs		250	V _{DC}	
	Transient per DO-160E, 100ms		80		
Output Voltage (+OUT to –OUT)	Continuous	-0.5	65.0	V _{DC}	
Dielectric Withstand (Input/Output to EMI GND/Case)			1500	V _{DC}	
Average Output Current			22	А	
Input/Output Pin Torque and Mounting Torque			4 (0.45)	in·lbs (N·m)	

Electrical Specifications

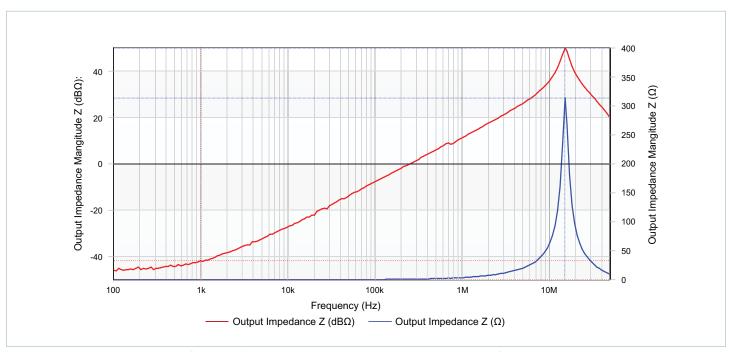
Specifications apply over all line and load conditions, unless otherwise noted; **boldface** specifications apply over the temperature range of -55°C ≤ T_{CASE} ≤100°C (M-Grade); all other specifications are at T_{CASE} = 25°C unless otherwise noted.

Attribute	Symbol	Conditions / Notes	Min	Тур	Max	Unit	
		Power Input / Output Specification					
		Continuous operation	16	28	50		
		Continuous reverse-voltage protection			-50		
Input Voltage Range ^[b]	V _{IN}	Transient per MIL-STD-1275D/E, 50ms			100	V	
		Transient per MIL-STD-1275A/B/D, 70µs			250		
		Transient per DO-160E, 100ms			80		
Maximum Output Current ^[c]	I _{OUT_MAX}	Continuous at 16V (I _{OUT} = 350/V _{IN})			22	А	
Rated Output Power ^[c]	P _{OUT}	Continuous, over all line conditions			350	W	
Internal Voltage Drop		At 16V, 22A, 100°C case			0.65	V_{DC}	
		Full load, low line, high temperature	97.7	98	98.2	%	
Efficiency	η	Full load, nominal line, high temperature	99.2	99.4		%	
		Full load, high line, high temperature	99.7	99.8		%	

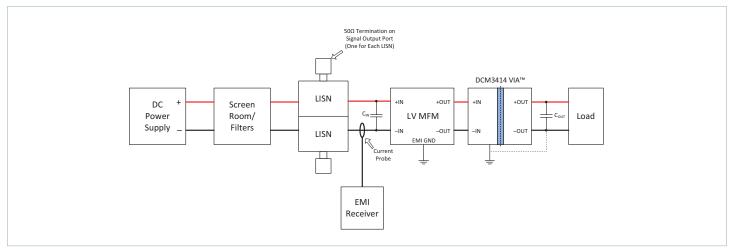
^[b] Transient immunity specifications are met only when LV MFM is used with M-Grade 16 – $50V_{IN}$ DCM3414 VIATM. ^[c] One MFM for each DCMTM even if the total power of the DCM is below P_{OUT} maximum value.

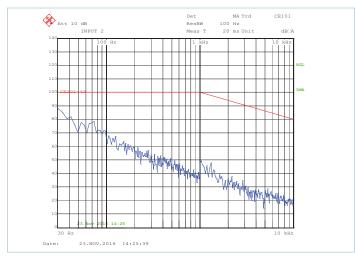

EMI/EMC

Standard	Test Procedure	Notes			
	MIL-S	TD-461E/F/G			
Conducted Emmisions	CE101	Figure CE101-4, Navy ASW & Army Aircraft, Curve #2 (28V _{DC} or below)			
Conducted Liminisions	CE102	Figure CE102-1, Basic curve for all applications			
Conducted Susceptibility	CS101	Figure CS101, Curve #2, for all applications (28V _{DC} or below)			
	MIL	-STD-1275			
Transient Immunity ^[d]	MIL-STD-1275A/B/D/E	100V _{DC} for 50ms duration			
mansient inimunity**	IVIIL-31D-12/3A/B/D/E	250V _{DC} for 70μs			
	MII	L-STD-704			
	MIL-STD-704A (MIL-HDBK-704-8) Normal Voltage Transients	From table LDC 105-II (A-J) overvoltage $70V_{DC}$ for 20ms duration; within the MIL-STD-1275 (100V for 50ms) transient condition			
Transient Immunity ^[d]	MIL-STD-704B/C/D/E/F (MIL-HDBK-704-8) Normal Voltage Transients	From table LDC 105-III (AA-RR) overvoltage $50V_{DC}$ for 12.5ms duration, undervoltage $18V_{DC}$ for 15ms duration; within the normal operating input voltage range			
	MIL-STD-704A (MIL-HDBK-704-8) From table LDC 302-II (A-J) overvoltage 80V _{DC} for 50ms duration MIL-STD-1275 (100V for 50ms) transient condition				
	MIL-STD-704E/F (MIL-HDBK-704-8) Abnormal Voltage Transients	From Table LDC 302-IV (AAA-FFF), overvoltage test conditions; within the normal operating input voltage range			
	DO-160E				
Transient Immunity ^[d]	DO-160E sec. 16, cat. z	80V _{DC} for 100ms			


 $^{^{[}d]}$ Transient immunity specifications are met only when LV MFM is used with M-grade 16 – $50V_{IN}$ DCM3414 VIA TM .

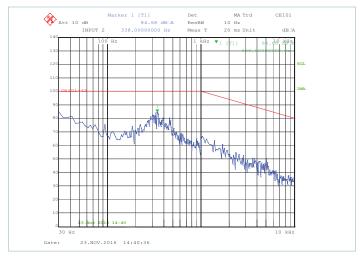
Typical Characteristics


Figure 1 — Attenuation (dB) vs. frequency (Hz), input leads are terminated with LISN impedances 25Ω for common mode, 100Ω for differential mode


Figure 2 — Output impedance vs. frequency (Hz) plot looking back into the output terminals of the MFM with shorted input terminals

Typical Conducted Emissions

CE101 peak scans with MFM1714V50M50C5M00 and DCM3414V50M31C2T01, in either condition: -OUT connected to GND or -OUT floating.


Figure 3 — A typical test set up for conducted emissions CE101 is shown above. A current probe is used to measure and plot the variations in the current through the RED and BLACK leads at various load conditions.

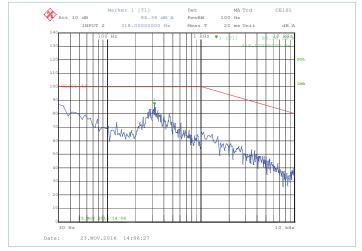

Figure 4 — Peak scan for the RED lead with $C_{IN} = 2200 \mu F$, $C_{OUT-EXT} = 1000 \mu F$, 0% load

Figure 6 — Peak scan for the BLACK lead with C_{IN} = 2200 μ F, $C_{OUT\text{-}EXT}$ = 1000 μ F, 0% load

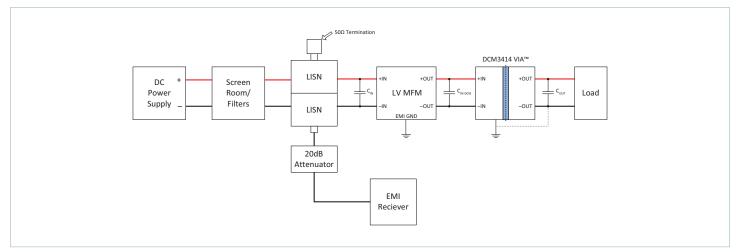
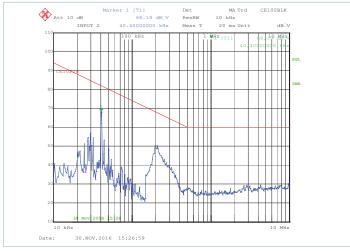
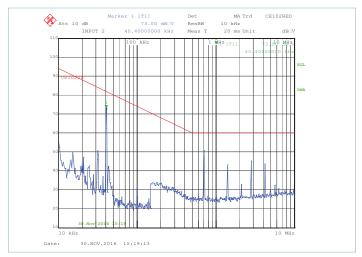

Figure 5 — Peak scan for the RED lead with $C_{IN} = 2200\mu F$, $C_{OUT-EXT} = 1000\mu F$, 100% load


Figure 7 — Peak scan for the BLACK lead with $C_{IN} = 2200\mu F$, $C_{OUT-EXT} = 1000\mu F$, 100% load

Typical Conducted Emissions (Cont.)


CE102 peak scans with MFM1714V50M50C5M00 and DCM3414V50M31C2T01, in either condition: -OUT connected to GND or -OUT floating.


Figure 8 — A typical test set up for conducted emissions CE102 is shown above. A 50Ω termination is used for LISN and voltage across the RED and BLACK leads are measured at various load conditions.

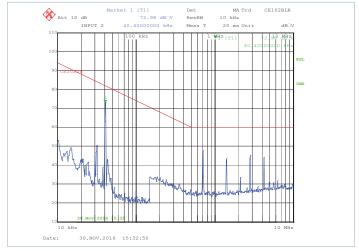

Figure 9— Peak scan for the RED lead with $C_{IN} = 2200 \mu F$, $C_{IN-DCM} = 1000 \mu F$, $C_{OUT-EXT} = 1000 \mu F$, 0% load

Figure 11 — Peak scan for the BLACK lead with $C_{IN} = 2200\mu F$, $C_{IN-DCM} = 1000\mu F$, $C_{OUT-EXT} = 1000\mu F$, 0% load

Figure 10 — Peak scan for the RED lead with $C_{IN} = 2200\mu F$, $C_{IN-DCM} = 1000\mu F$, $C_{OUT-EXT} = 1000\mu F$, 100% load

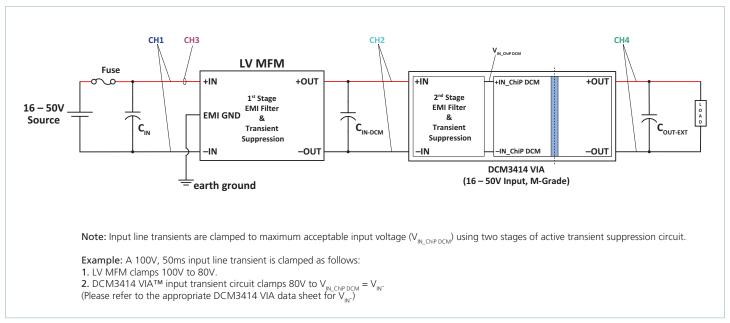
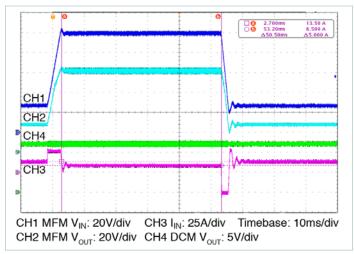


Figure 12 — Peak scan for the BLACK lead with $C_{IN} = 2200\mu F$, $C_{IN-DCM} = 1000\mu F$, $C_{OUT-EXT} = 1000\mu F$, 100% load



Electrical Power Characteristics

Transient immunity with MFM1714V50M50C5M00 and DCM3414V50M13C2M01 per MIL-STD-1275D/E.

Figure 13 — Input line transient suppression block diagram

Figure 14 — Transient immunity; LV MFM and DCM3414 VIA output response to an 100V, 50ms input transient

Environmental Qualification

Testing Activity	Reference Standard	Test Details
HTOB-HTOL High-Temperature Operating Bias/Life	JESD22-A110-B	Duration of 1000hrs, high line, full load, max operating temperature, power cycled per IPC9592
TC (Temperature Cycling)	JESD22-A104D	1000 cycles –55 to 125°C
HALT (Highly-Accelerated Life Test)	DP-0266	Low temp, high temp, rapid thermal cycling, random vibration test, combined stress test
THB (Temperature Humidity Bias)	JEDSD22-A101C	Duration of 1000hrs, biased, 85°C, 85%RH.
HTS (High-Temperature Storage)	JESD 22-A103-D	Duration 1000hrs, no bias. Maximum storage temperature (125°C)
LTS (Low-Temperature Storage)	JESD22–A119	Duration 1000hrs, no bias. Minimum storage temperature (–65°C)
Random Vibration	MIL-STD-810G	Method 514.6, Procedure I, Category 24, mounted on QA
Mechanical Shock	MIL-STD-810G	Method 516.6, Procedure I, Environment: functional shock 40G, mounted on QA
Electro Static Discharge Human Body Model	JEDEC JS-001-2012	Table 2B, Class 2, ±2000V minimum
Electro Static Discharge Device Charge Model	JESD22-C101-E	Class III ±500V minimum
Free Fall	IPC9592B	IEC 60068-2-32, Freefall Procedure 1
Term Strength	MIL-STD-202G	Method 211A, Test Condition A, Environment: ambient temperature & %Rh.
Through-Hole Solderability	IPC-9592B	IPC/ECA J-STD-002 Test A (dip and look)
Salt Fog	MIL-STD-810G	Method 509.5
Fungus	MIL-STD-810G	Method 508.6
Resistance to Solvents	MIL-STD-202G	Method 215K
Acceleration	MIL-STD-810G	Method 513.6 Procedure II
Altitude	MIL-STD-810G	Method 500.5 Procedure I & II
Explosive Atmosphere	MIL-STD-810G	Method 511.5 Procedure I, operational

Thermal Considerations

The LV MFM must be operated such that the internal components are kept within the maximum of the operating temperature range by monitoring/controlling the temperature of both the non-pin-side plastic housing and the output terminals. A simplified thermal circuit model of the LV MFM is shown below in Figure 15. In this thermal-circuit model, thermal resistance is in units of °C/W is analogous to electrical resistance, temperature in °C is analogous to voltage, and the rate of heat transferred in W is analogous to current. The maximum internal temperature of the LV MFM can be estimated based on total power dissipated by the MFM, the temperature maintained on the non-pin side of the housing, and the temperature of the output terminals.

In the example shown in Figure 15, the non-pin side of the plastic housing is maintained at 70°C, the output terminals are measured to be about 100°C, and the LV MFM is dissipating 9W of heat. The resultant maximum internal temperature of the LV MFM can then be estimated at 124°C, which is close to the maximum operating temperature. 4W of heat is conducted through the lower housing, and the remaining 5W is conducted through the output terminals.

The LV MFM is best attached to a material with a high thermal conductivity (e.g., aluminum or copper) to maintain temperature uniformity across the non-pin-side plastic housing.

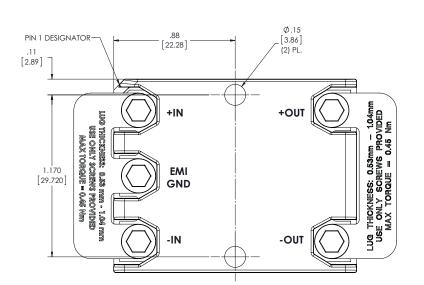
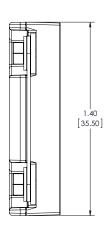
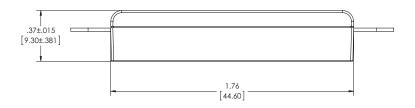
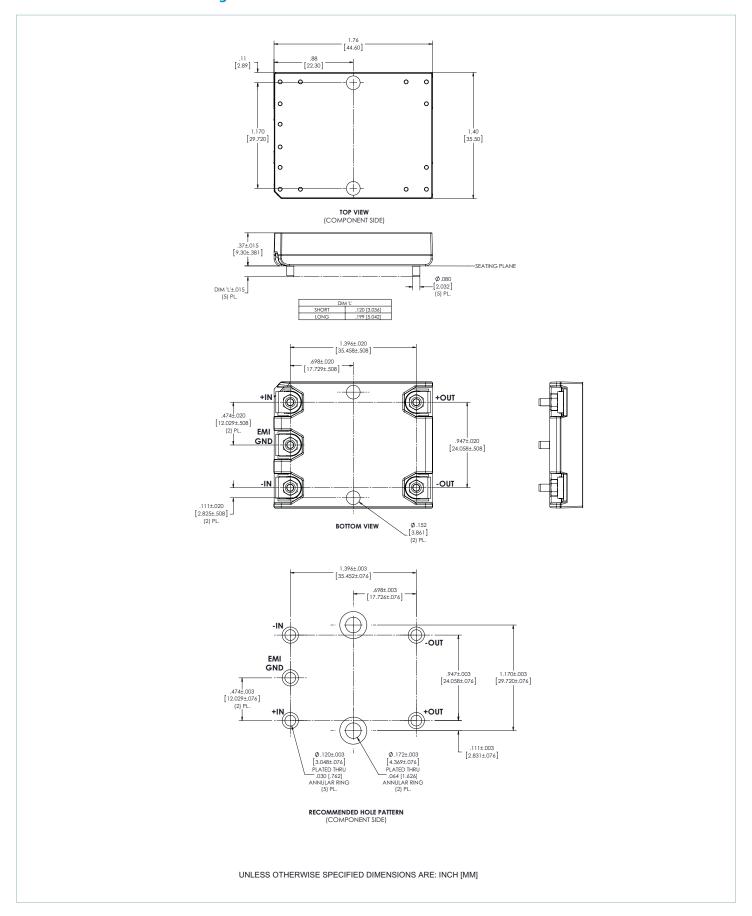





Figure 15 — LV MFM thermal model

Chassis-Mount Outline Drawing



UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE: INCH [MM]

Board-Mount Outline Drawing

Revision History

Revision	Date	Description	Page Number(s)
1.0	06/07/17	Initial Release	n/a
1.1	07/26/17	Added fuse recommendation for typical application & remvoed MOV Updated internal operting temperature Updated note on CE scans for –OUT floating Updated MTBF rating	2 4 7, 8 10
1.2	07/17/18	Added input line transient suppression block diagram Updated mechanical drawings	9 13, 14
1.3	10/23/18	Updated features & benefits Added reverse-polarity protection specifications	1 4
1.4	03/31/20	Updated MIL-STD-461 to the latest revision	1, 5
1.5	09/23/24	Updated document format and agency approvals Updated environmental qualification test details for MIL-STD-810G	1, 4, 5 10

Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies. Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor's product warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Specifications are subject to change without notice.

Visit https://www.vicorpower.com/mil-cots-dc-dc/mfm-filter-module for the latest product information.

Vicor's Standard Terms and Conditions and Product Warranty

All sales are subject to Vicor's Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor's webpage (https://www.vicorpower.com/termsconditionswarranty) or upon request.

Life Support Policy

VICOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies Vicor against all liability and damages.

Intellectual Property Notice

Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Interested parties should contact Vicor's Intellectual Property Department.

The products described on this data sheet are protected by the following U.S. Patents Numbers: Patents Pending.

Contact Us: https://www.vicorpower.com/contact-us

Vicor Corporation

25 Frontage Road Andover, MA, USA 01810 Tel: 800-735-6200 Fax: 978-475-6715 www.vicorpower.com

email

Customer Service: <u>custserv@vicorpower.com</u> Technical Support: <u>apps@vicorpower.com</u>

©2017 – 2024 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation.

All other trademarks, product names, logos and brands are property of their respective owners.

