

HV MFM™ Filter MFM3314xD2KD2F0yzz ሥద⊠C€

High-Voltage MIL-COTS Input Filter Module

Features & Benefits

- 270V nominal input
- 99% efficiency
- EMI filtering
 - MIL-STD-461E/F/G, selected CE and CS tests
- Input transient protection
 - MIL-STD-704E/F (MIL-HDBK-704-8) Normal and abnormal transients
- Envronmental qualification
 - MIL-STD-810
 - MIL-STD-202
- Low M-Grade temperature rating, providing operation down to –55°C
- Output power up to 600W

Typical Applications

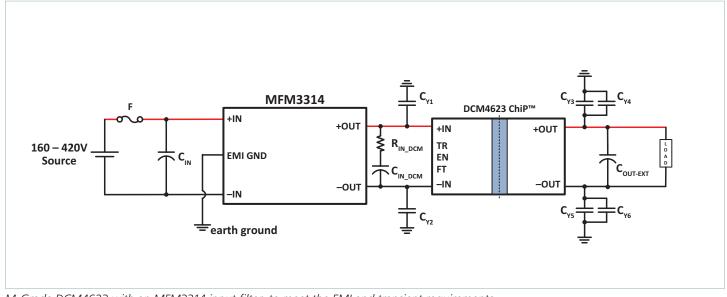
- Defense
- Aerospace

Compatible Products

 High-input-voltage ChiP DCM, 160 – 420V_{DC} (270V nominal input)

Product Description

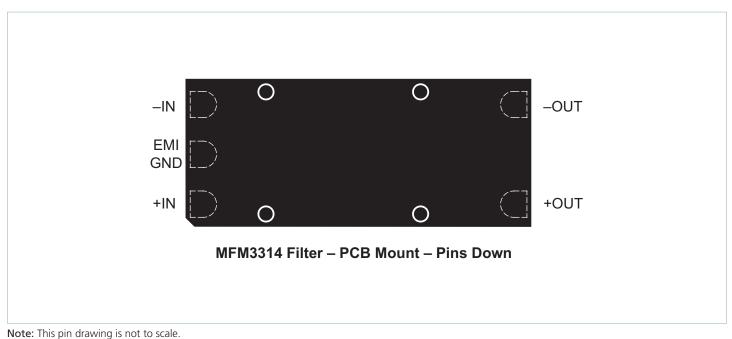
The MFM Filter is a DC front-end module that provides EMI filtering and transient protection. The MFM DCM[™] Filter enables designers using Vicor 270V nominal input voltage ChiP[™] modules to meet conducted emission/conducted susceptibility per MIL-STD-461E/F/G; and input transients per MIL-STD-704A/F. The MFM Filter accepts an input voltage of 160 – 420V_{DC} (270V nominal input) and delivers output power up to 600W.


Package Information

- PCB-Mount VIA[™] Package 3.31 x 1.41 x 0.42in [84.04 x 35.93 x 10.57mm]
- Weight: 54g

Note: Product images may not highlight current product markings and cosmetic features.

Typical Application



M-Grade DCM4623 with an MFM3314 input filter, to meet the EMI and transient requirements

Parts List for Typical Applications			
F	Eaton 505 Series, rated 10A Littelfuse 487 Series, rated 10A		
C _{IN}	TDK C5750X6S2W225K250KA, 5x 2.2µF (11µF)		
C _{IN_DCM}	ΤDK C5750X6S2W225K250KA, 2.2μF		
R _{IN_DCM}	Generic 3.6Ω		
C _{Y1} , C _{Y2}	Murata GA352QR7GF152KW01L, 1500pF		
C _{Y3} , C _{Y4} , C _{Y5} , C _{Y6}	Murata GA355DR7GF472KW01L, 4700pF		

Pin Configuration

Pin Descriptions

Signal Name	Туре	Function
+IN	INPUT POWER	Positive input power terminal
–IN	INPUT POWER RETURN	Negative input power terminal
EMI GND	EMI GROUND	EMI ground terminal
+OUT	OUTPUT POWER	Positive output power terminal
-OUT	OUTPUT POWER RETURN	Negative output power terminal

MFM3314xD2KD2F0yzz

Part Ordering Information

Part Number	Package Type	Product Grade	Option Field
MFM3314 B D2KD2F0 M08	B = Board VIA	M = -55 to 100°C	08 = Long Pin

Storage and Handling Information

Attribute	Comments	Specification	
Operating Internal Temperature Range (T_{INT})	M-Grade	–55 to 125°C	
Case Temperature	M-Grade	–55 to 100°C	
Storage Temperature	M-Grade	–65 to 125°C	
Soldering Temperature	See AN:401 PCB Mount VIA Soldering Guidelines		
Weight		54g	
Pin Material		C145 copper, full hard	
Underplate	Low-stress ductile nickel	50 – 100µin	
	Palladium	0.8 – 6µin	
Pin Finish	Soft Gold	0.12 – 2µin	
Flatness		< 0.25mm [0.010in]	

Safety, Reliability and Agency Approvals

Attribute	Comments		Unit		
Dielectric Withstand	Input / Output to EMI GND/Case	2500	V _{DC}		
MTBF	MIL-HDBK-217FN2 Parts Count - 25°C Ground Benign, Stationary, Indoors / Computer		MHrs		
Agency Approvals/Standards	UKCA, electrical equipment (safety) regulations				
	CE Marked for Low Voltage Directive and RoHS Recast Directive, as applicable				

Absolute Maximum Ratings

The absolute maximum ratings below are stress ratings only. Operation at or beyond these maximum ratings can cause permanent damage to the device. Electrical specifications do not apply when operating beyond rated operating conditions.

Parameter	Comments	Min	Max	Unit
Input Voltage (+IN to –IN)	Continuous	-0.5	460.0	V
Output Voltage (+OUT to –OUT)	Continuous	-0.5	460.0	V
Dielectric Withstand (Input/Output to EMI GND/Case)			2500	V _{DC}
Average Output Current			4	А

Electrical Specifications

Specifications apply over all line and load conditions, unless otherwise noted; **boldface** specifications apply over the temperature range of $-55^{\circ}C \leq T_{CASE} \leq 100^{\circ}C$ (M-Grade); all other specifications are at $T_{CASE} = 25^{\circ}C$ unless otherwise noted.

Attribute	Symbol Conditions / Notes		Min	Тур	Max	Unit
		Power Input / Output Specification				
Input Voltage Range	V _{IN}	Continuous operation	160	270	420	V
Maximum Output Current [a]	I _{OUT_MAX}	Continuous, at $V_{OUT} = 160V$ ($I_{OUT} = P_{OUT}/V_{IN}$)			4	А
Rated Output Power ^[a]	P _{OUT}	Continuous, over all line conditions			600	W
Internal Voltage Drop		At 270V, 2.37A, 100°C baseplate			1.6	V _{DC}
Power Dissipation	P _D	Worst case; low line, full load			6	W

^[a] One MFM for each ChiPTM DCMTM is required even if the total power of the DCM is below P_{OUT} maximum value.

EMI/EMC

Standard	Test Procedure	Notes					
	MIL-STD-461E/F/G						
Conducted Emmisions	CE101	Figure CE101-4, Navy ASW & Army Aircraft, Curve #1 (above $28V_{DC}$)					
Conducted Emimisions	CE102	Figure CE102-1, Basic curve + 10dB limit relaxation for all applications					
	CS101	Figure CS101, Curve #1, for all applications (above $28V_{\text{DC}}$)					
Conducted Susceptibility	CS114	Curve 5, Bulk Current Injection					
Conducted Susceptibility	CS115	Figure CS115-1 for all applications, impulse excitation					
	CS116	Figure CS116-2 for all applications, damped sinusoidal					
	MIL-I	HDBK-704-7					
Transient Immunity	MIL-STD-704F normal transients	From table HDC105-III: overvoltage 330V $_{\rm DC}$ for 20ms duration, undervoltage 200V $_{\rm DC}$ for 50ms duration					
ransient immunity	MIL-STD-704F abnormal transients	From table HDC302-III: overvoltage 350V $_{\rm DC}$ for 50ms duration, undervoltage 180V $_{\rm DC}$ for 50ms duration					

Thermal Specified Operating Area

Figure 1 — Thermal specified operating area: maximum output power vs. case temperature

Typical Conducted Emissions

CE101 peak scans with MFM3314VD2KD2F0M00 and DCM4623TD2K31E0M00, in either condition: -OUT connected to GND or -OUT floating.

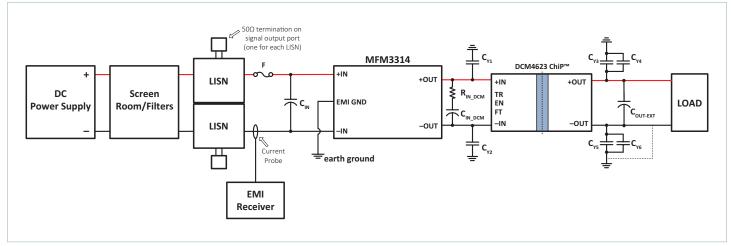


Figure 2 — A typical test set up for conducted emissions CE101 is shown above. A current probe is used to measure and plot the variations in the current through the RED and BLACK leads at various load conditions.

Figure 3 — Peak scan for the RED lead, 10% load

Figure 5 — Peak scan for the RED lead, 90% load

Figure 4 — Peak scan for the BLACK lead, 10% load

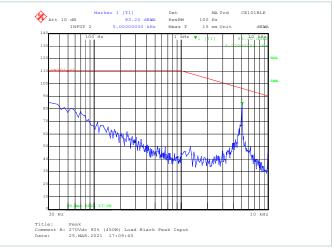


Figure 6 — Peak scan for the BLACK lead, 90% load

Typical Conducted Emissions (Cont.)

CE102 peak scans with MFM3314VD2KD2F0M00 and DCM4623TD2K31E0M00, in either condition: -OUT connected to GND or -OUT floating.

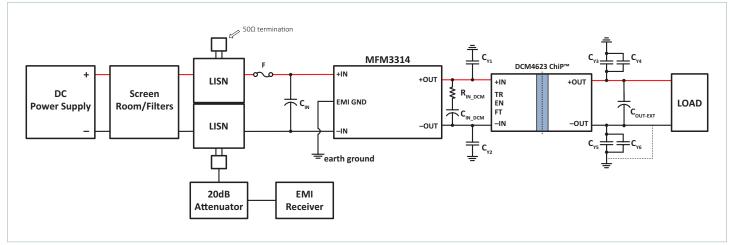


Figure 7 — A typical test set up for conducted emissions CE102 is shown above. A 50Ω termination is used for LISN and voltage across the RED and BLACK leads are measured at various load conditions.

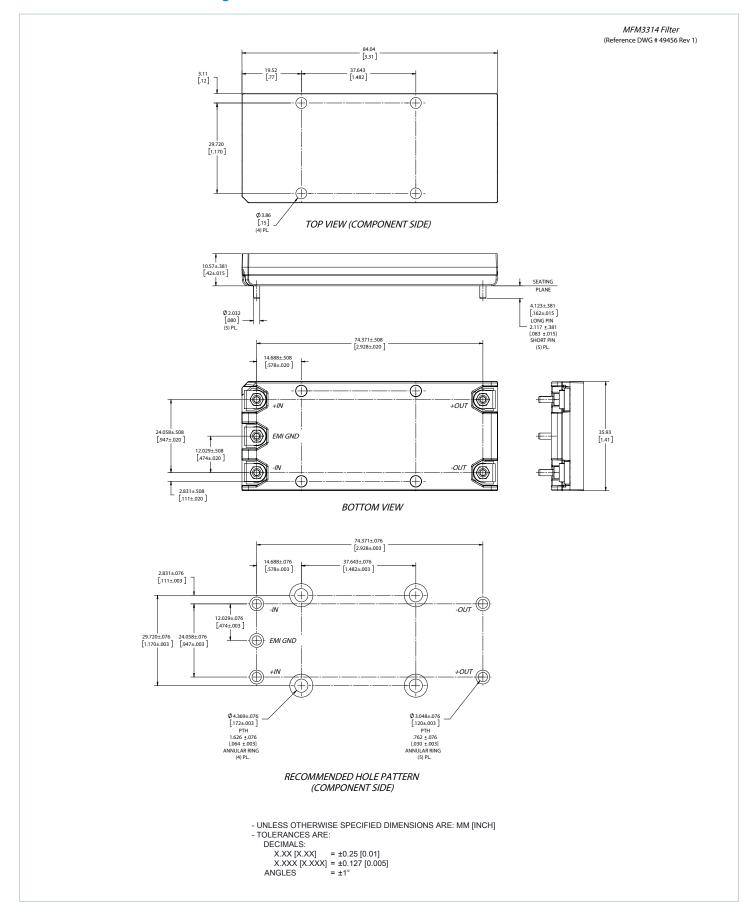
Figure 8 — Peak scan for the RED lead, 10% load

Figure 10 — Peak scan for the RED lead, 90% load

Figure 9 — Peak scan for the BLACK lead, 10% load

Figure 11 — Peak scan for the BLACK lead, 90% load

Environmental Qualification


Testing Activity	Reference Standard	Test Details
HTOB-HTOL High-Temperature Operating Bias/Life	JESD22-A110-B	Duration of 1000hrs, high line, full load, max operating temperature, power cycled per IPC9592
TC (Temperature Cycling)	JESD22-A104D	1000 cycles –55 to 125°C
HALT (Highly-Accelerated Life Test)	DP-0266	Low temp, high temp, rapid thermal cycling, random vibration test, combined stress test
THB (Temperature Humidity Bias)	JEDSD22-A101C	Duration of 1000hrs, biased, 85°C, 85%RH.
HTS (High-Temperature Storage)	JESD 22-A103-D	Duration 1000hrs, no bias. Maximum storage temperature (125°C)
LTS (Low-Temperature Storage)	JESD22–A119	Duration 1000hrs, no bias. Minimum storage temperature (–65°C)
Random Vibration	MIL-STD-810G	Method 514.6, Procedure I, Category 24, mounted on QA
Mechanical Shock	MIL-STD-810G	Method 516.6, Procedure I, Environment: functional shock 40G, mounted on QA
Electro Static Discharge Human Body Model	JEDEC JS-001-2012	Table 2B, Class 2, ±2000V minimum
Electro Static Discharge Device Charge Model	JESD22-C101-E	Class III ±500V minimum
Free Fall	IPC9592B	IEC 60068-2-32, Freefall Procedure 1
Term Strength	MIL-STD-202G	Method 211A, Test Condition A, Environment: ambient temperature & %Rh.
Through-Hole Solderability	IPC-9592B	IPC/ECA J-STD-002 Test A (dip and look)
Salt Fog	MIL-STD-810G	Method 509.5
Fungus	MIL-STD-810G	Method 508.6
Resistance to Solvents	MIL-STD-202G	Method 215K
Acceleration	MIL-STD-810G	Method 513.6 Procedure II
Altitude	MIL-STD-810G	Method 500.5 Procedure I & II
Explosive Atmosphere	MIL-STD-810G	Method 511.5 Procedure I, operational

MFM3314xD2KD2F0yzz

VIC

Board-Mount Outline Drawing

MFM3314xD2KD2F0yzz

Revision History

Revisio	on	Date	Description	Page Number(s)
1.0		11/29/21	Initial release	n/a
1.1		09/09/24	Updated agency approvals Updated environmental qualification test details for MIL-STD-810G	1, 4 8

Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies. Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor's product warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Specifications are subject to change without notice.

Visit https://www.vicorpower.com/mil-cots-dc-dc/mfm-filter-module for the latest product information.

Vicor's Standard Terms and Conditions and Product Warranty

All sales are subject to Vicor's Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor's webpage (https://www.vicorpower.com/termsconditionswarranty) or upon request.

Life Support Policy

VICOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies Vicor against all liability and damages.

Intellectual Property Notice

Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Interested parties should contact Vicor's Intellectual Property Department.

The products described on this data sheet are protected by the following U.S. Patents Numbers: Patents Pending.

Contact Us: https://www.vicorpower.com/contact-us

Vicor Corporation 25 Frontage Road Andover, MA, USA 01810 Tel: 800-735-6200 Fax: 978-475-6715 www.vicorpower.com

email

Customer Service: <u>custserv@vicorpower.com</u> Technical Support: <u>apps@vicorpower.com</u>

©2021 – 2024 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation. All other trademarks, product names, logos and brands are property of their respective owners.

